When teams are working with machine learning models, changing features, different data sets, new algorithms, and unique computing resources all influence a machine learning model's performance. Tracking all of these items can be complicated. With tools such as DVC, MLFlow, AWS, you can meet the challenge. Milecia McGregor demonstrates how to use MLOps tools to improve machine learning and automate some of the steps in the process.

This Labor Day, enjoy $120 off Coursera Plus. Unlock access to 10,000+ programs. Save today.


Recommended experience
What you'll learn
Capitalize on MLOps as an emerging field. Data-focused companies are looking for engineers with these skill sets.
Build a basic MLOps pipeline from scratch with open-source tools - take a working template with you for your own projects.
Take ChatGPT into account to provide a practical bridge for engineers and DevOps teams.
Skills you'll gain
Details to know

Add to your LinkedIn profile
August 2025
5 assignments
See how employees at top companies are mastering in-demand skills

There is 1 module in this course
This module introduces MLOps for machine learning engineers, covering the end-to-end pipeline from data collection to production deployment. Learners explore data handling and versioning, model creation and experiment tracking, and best practices for deploying and monitoring models in production. Through practical workflows and industry-standard tools, the course emphasizes automation, reproducibility, and maintaining robust ML systems, equipping participants to apply MLOps principles to real-world projects.
What's included
35 videos5 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
More questions
Financial aid available,