AWS: Feature Engineering, Data Transformation & Integrity is the second course in the Exam Prep (MLA-C01): AWS Certified Machine Learning Engineer – Associate Specialization. This course enables learners to build essential skills in preparing and transforming data for machine learning workloads using AWS services. It provides a structured, hands-on understanding of data cleaning, feature engineering, encoding techniques, and scalable ETL workflows on AWS.

Discover new skills with $120 off courses from industry experts. Save now.


AWS: Feature Engineering Data Transformation & Integrity
This course is part of Exam Prep MLA-C01: AWS Machine Learning Engineer Assocaite Specialization

Instructor: Whizlabs Instructor
Included with
Recommended experience
What you'll learn
Apply data cleaning, transformation, and feature engineering techniques to prepare datasets for machine learning.
Recognize methods to detect and reduce bias in data preparation and securely manage PII using AWS tools like DataBrew.
Implement ETL workflows using AWS Glue, Glue Crawlers, and DataBrew for data preparation.
Process large-scale datasets using Apache Spark on Amazon EMR for machine learning workloads.
Skills you'll gain
Details to know

Add to your LinkedIn profile
September 2025
4 assignments
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 2 modules in this course
Welcome to Week 1 of the AWS: Feature Engineering, Data Transformation & Integrity course. This week, you’ll dive into the foundational steps of preparing high-quality data for machine learning workflows. We’ll begin with data cleaning and transformation techniques to ensure consistency and accuracy in your datasets. You’ll then explore feature engineering methods that help extract meaningful insights, followed by encoding techniques such as One-Hot Encoding, Label Encoding, and Tokenization to prepare categorical and textual data for modeling. Finally, we’ll focus on ensuring data integrity and fairness by learning how to address bias in data preparation and securely handle sensitive information (PII) using tools like AWS Glue DataBrew.
What's included
5 videos2 readings2 assignments1 discussion prompt
Welcome to Week 2 of the AWS: Feature Engineering, Data Transformation & Integrity course. This week, you'll dive into AWS-native tools for large-scale data processing and transformation. We’ll begin with AWS Glue, where you'll learn how to create Glue Crawlers, configure ETL jobs, and validate outputs for structured and semi-structured data. You'll explore AWS Glue DataBrew, a no-code tool that simplifies data profiling, cleaning, and transformation. We’ll also cover AWS Glue Data Quality to help ensure your datasets meet required standards for ML workflows. In the second half of the week, you’ll work with Amazon EMR to process massive datasets using Apache Spark. You'll launch EMR clusters, submit jobs, and transform data at scale — gaining hands-on experience with distributed data pipelines tailored for machine learning tasks.
What's included
10 videos3 readings2 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Explore more from Algorithms
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
More questions
Financial aid available,